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A B S T R A C T   

Objective: To accurately predict Alzheimer’s disease (AD) in its early stage of cognitive impairment is crucial to 
clinical diagnosis and intervention. However, there is no consensus over which parts of brain areas are 
responsible for cognitive decline due to the incompatible and single-modal-based parcellation methods employed 
by researchers. 
Methods: A novel dynamic brain connectivity processing method (DBCP) is proposed based on the human con
nectome project multimodal parcellation (HCP MMP) to explore the spatial–temporal characteristics of the brain 
in different stages of mild cognitive impairment (MCI) and Alzheimer’s disease. First, dynamic connectivity 
under HCP MMP is constructed to divide the whole fMRI time series into hundreds of segmentations. Then, 
graph-based topological measures are calculated, followed by statistical outlier examinations implemented by 
the K-means method. 
Results: A superior performance (accuracy = 86%, recall = 87%, precision = 86%, F1-score = 86%) in the four 
groups (healthy control vs. early MCI vs. late MCI vs. AD) recognition is achieved by training an effective but 
uncomplicated deep learning model. 
Conclusion: Dynamic connectivity within the most fine-grained multimodal human cortex parcellation can reveal 
more useful details to distinguish brain dysfunctional patients compared with static connectivity or single modal 
based parcellation, and the proposed method can suppress the outliers well among fragmented fMRI signals. 
Significance: Providing more evidence on the primary responsibility of DMN and DAN for cognitive impairment of 
the brain, 64 cortex regions with significant topological alterations are suggested as the most prominent and fine- 
grained biomarker for further longitudinal AD studies.   

1. Introduction 

Dementia is becoming an increasingly social problem worldwide and 
is one of the major causes of dysfunctionality in the human brain. Alz
heimer’s disease (AD), the most common form of dementia, contributes 
to nearly 60%-70% of cases and is accompanied by severe memory loss, 
decreased language expression, decreased social ability decline, and 
many other behavioral issues. AD is a chronic neurodegenerative disease 
that gradually worsens over time, so it is crucial to intervene and treat 
patients in the early stage of AD. Mild cognitive impairment (MCI) is 
considered a transitional stage between normal aging and AD. In the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI), patients are cate
gorized by their neuropsychological examination scores, such as the 

Clinical Dementia Rating Scale (CDR) and Mini-Mental State Examina
tion (MMSE), into cohorts of early MCI (EMCI), late MCI (LMCI) and AD. 
Studies around the world aim to achieve accurate predictions based on 
various methods before deteriorating to an irreversible state, and great 
progress has been made in recent years. Sarraf et al., [1] collected two 
subsets of the ADNI database with structural MRI and resting-state 
functional MRI (rs-fMRI) data, aligned the registered images to the 
MNI152 standard space, and finally achieved an accuracy of 99.9% in 
the classification of AD and healthy controls (HCs). Hu et al., [2] 
investigated 549 subjects from the ADNI database and preprocessed the 
MRI data with a standard voxel-based morphometry method, extracted 
multiscale features for both whole gray matter images and gray matter 
images of the hippocampus region, and recognized AD patients from HC 
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with an accuracy of 84.13%. Hojjati et al., [3] acquired 18 patients who 
converted to AD from MCI (cMCI) and 62 age-matched MCI non- 
converters with structural and functional MRI images, tested the sta
tistical significance of computed features, and trained a classification 
model with an accuracy of 91.4%. Although the performance of binary- 
group classification is excellent, an important remaining problem is that 
most trained models are incompetent to obtain high accuracy in multi
group distinguishment among HC, EMCI, LMCI, or AD, mainly because 
the patterns in brain characteristics related to human cognitive 
impairment has not yet been properly grasped. 

An increasing number of studies [4–6] confirm that cognitive 
impairment is induced by regional dysfunction in the brain instead of 
the whole. A common preprocessing used to study the brain‘s regional 
functionality is parcellation. There are kinds of methods for brain seg
mentation in terms of structure or function employed by studies for 
dementia. Hojjati et al., [7] adopted the Automated Anatomical Label
ing (AAL) atlas to extract 90 regions of interest (ROIs), calculated 
functional connectivity matrices for 80 MCI patients, and finally selected 
the optimal six features for the classification with high accuracies. Suk, 
H. I et al., [8] parcellated the brain into 93 ROIs by warping the Kabani 
atlas and trained a deep learning model for the diagnosis of AD/MCI. 
Grajski and Bressler [9] segmented the brain into cortical parcellation 
and subcortical regions by using FreeSurfer and Analysis of Functional 
NeuroImages (AFNI) software and proved that resting-state functional 
connectivity in the medial temporal lobe (MTL) can be a candidate 
biomarker of Alzheimer’s neuropathology. Most of the parcellation 
atlases in these studies were constructed by a single modality, and it is 
inconsistent and not compatible with the naming and sizing of parcel
lated areas. Generally, for comparison, these studies must map brain 
regions into the Brodmann areas which were proposed back in 1909. In 
2016, a novel parcellation method (HCP MMP, human connectome 
project multimodal parcellation) [10] based on sharp changes in cere
bral cortical architecture, function, connectivity, and topography, was 
delineated with 180 areas per hemisphere. It is considered the most fine- 
grained to date human parcellation method and is expected to study the 
brain functioning mechanism at a multimodal level. Although HCP MMP 
charactered the details for a healthy brain, there is a lack of research on 
aging or diseased brains, particularly those that focus on AD patients. In 
addition, it is largely limited by the high quality of T1/T2w images 
required and sophisticated preprocessing to carry out. Recently, a more 
general solution to this problem was developed by Sheng et al., [11,12] 
that a variety of neuroscience technologies were integrated for the 
registration from non-HCP ADNI data to the Connectivity Informatics 
Technology Initiative (CIFTI) gray-ordinate space. Previously, we 
compared the classification capability between HCP MMP with other 
atlases in static connectivity, which showed superior performance in 
binary recognition for AD patients with healthy controls [12,13]. 
However, the brain functions time-varying. The above methods did not 
investigate the dynamic characteristics for AD brains, and only static 
connectivity under HCP MMP was studied. Static correlations between 
fMRI BOLD signals may fail to reveal the intrinsic dynamic 
characteristics. 

For the research of brain functionality with fMRI data, a connectivity 
matrix is widely constructed by computing the Pearson coefficient of the 
BOLD signal time series associated with voxels or regions. Other con
nectivity estimation measures, such as precision matrices or partial 
correlations, have also been mentioned in the literature [14]. Usually, 
the connectivity of any two areas is calculated by using the whole range 
of time series, and it is considered an average level of associations be
tween regions in the brain and referred to as static connectivity. The 
advantages of this approach are that noise generated during fMRI 
scanning can be weakened and that the method is easy to implement 
without many parameters to set. Recently, the time-varying connectivity 
network chronnectome [15] has attracted great interest [16–18], which 
focuses on the spatiotemporal dynamic characteristics of brain func
tionality. A sliding window is employed to divide the fMRI time series 

into several consequent segmentations in which the functional connec
tivity networks are calculated separately. Moguilner et al., [19] calcu
lated both static and dynamic connectivity from 300 participants‘ 
resting-state fMRI data, and an accuracy of 86.63% was yielded in the 
AD vs. HCs binary classification. While, windowed time series also 
induce lots of meaningless fMRI fragments which come from an intact 
signal sequence, which leads to numerous outliers in significance sta
tistics. There is no conclusion as to whether this method helps improve 
accurate prediction in multigroup situations and precisely locating the 
regions of pathological changes in the brain. 

In this study, we propose a novel method (DBCP) based on HCP MMP 
to explore the dynamic characteristics of the brain in different stages of 
MCI and AD patients and designed an efficient deep learning model with 
high accuracies in four-group (HC vs. EMCI vs. LMCI vs. AD) recogni
tion. To the best of our knowledge, it is the first time to integrate multi- 
modal cortex parcellation with chronnectome for AD study. The DBCP 
steps are described in the Materials and Method section. Various aspects 
of static and dynamic connectivity networks in statistics and classifica
tion are compared in the Results and Discussion section. Significantly 
altered HCP MMP areas are mapped into widely accepted intrinsic 
resting-state networks (RSNs) [20]. Results show that dynamic con
nectivity within the most fine-grained multimodal human cortex par
cellation can reveal more useful details to distinguish brain 
dysfunctional patients compared with static connectivity or single 
modal based parcellation, and the outliers among fragmented fMRI 
signals can be well suppressed by DBCP. It provides more evidence on 
the primary responsibility of the default mode network (DMN) and 
dorsal attention network (DAN) for cognitive impairment of the brain. 

2. Materials and method 

Fig. 1 shows the DBCP workstream proposed in this study. 

2.1. Data acquisition 

A total of 160 subjects from the ADNI2 dataset were acquired with 
structural and functional MRI data in this study. To ensure the consis
tency of the imaging protocol across the four cohorts and the robustness 
of the results, for the structural MRI data, subjects scanned only by 
Philips Medical Systems with T1 weighting (Magnetization Prepared 
Rapid Gradient Echo, MPRAGE) were collected. The spatial resolution =
256 × 256 × 170 pixels, the pulse sequence is GR, the slice thickness =
1.2 mm, TE = 3.1 ms, and TR = 6.8 ms. For the functional MRI data, 
subjects in the resting state with eyes open were gathered. The spatial 
resolution = 64 × 64 × 48 pixels, the pulse sequence is GR, the slice 
thickness = 3.3 mm, TE = 30 ms, and TR = 3000 ms. The number of 
slices is 6720. The total number of fMRI volumes is 6720/48 = 140. 
Subjects were classified into EMCI, LMCI, AD, and HC according to their 
baseline/screening visit neuropsychological assessments. Table 1 shows 
the demographic information and neuropsychological assessments of 
subjects employed in this study and more details are listed in Supple
mentary Table 1. 

2.2. Dynamic brain connectivity in HCP MMP 

The whole brain of each subject was first parcellated into 360 
cortical areas by the definition of HCP MMP using JHCP MMP [11]. 
First, structural and functional MRI data acquired from ADNI were 
registered into the standard CIFTI gray-ordinate space [21], which 
contains 26,298 subcortical voxels in 2 mm Montreal Neurological 
Institute (MNI) space and 32,492 surface vertices per hemisphere. Next, 
the template of HCP MMP was adapted to parcellate these 32,492 
vertices per hemisphere into 180 cortical areas per hemisphere. For 
comparison, the commonly accepted functional networks of the human 
brain, resting-state networks (RSNs) or intrinsic connectivity networks 
(ICNs), were adopted to map the 360 cortical adjacent regions into seven 
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physically disconnected functional networks consisting of the default 
mode network (DMN), dorsal attention network (DAN), somatomotor 
network (SN), frontoparietal network (FN), visual network (VN), ventral 
attention network (VAN) and limbic system. 

In both static and dynamic connectivity, the graph theory-based 
method was adopted by which parcellated regions are considered 
nodes in the graph. The correlation coefficient of the regional fMRI time 
series was computed as the weighting edge and forms the connectivity 
between brain regions. In general, static brain connectivity was 
measured for the average BOLD signal of the overall fMRI time series 
data from a single subject, and dynamic connectivity focused on inves
tigating the time-varying characteristics of the brain. In this study, the 
spatiotemporal resolution of fMRI data was 64 × 64 × 48 (pixels) × 140 
(volumes). We set up a fixed sliding window for segmentations of the 
overall fMRI time series. The size of the sliding window was 15, and the 
sliding step was 1. This means that there were 125 windowed time series 

segmented from the original fMRI time series, and each window 
involved 15 volumes and moves forward one volume each time for the 
next windowed time series. In HCP project, the parcellated fMRI data 
was stored in a *.ptseries file. Thus, the whole time series in the *. 
ptseries file was segmented by these 125 windows. The correlation co
efficients were calculated among 360 areas in paired windowed signals 
to construct the connectivity matrix. Consecutive connectivity matrices 
formed the chronnectome in the brain. In this way, the size of limited 
subjects was enlarged from 160 to 20,000 (160 × 125), which greatly 
increased the amount of available data. 

2.3. Topological alterations in the chronnectome 

Centrality change in brain connectivity is considered an important 
characterization in Alzheimer‘s disease and has been widely studied in 
literatures. Brain function is an interactivity result of brain regions. 
Study on the communication structure or information transmission path 
is expected to explain the functional mechanism of brain. In network- 
based analysis, brain areas are defined as the nodes. Centrality quan
tifies the importance of these nodes in communication. Based on the 
dynamic brain connectivity networks that originate from the fMRI time 
series, centralities in complex brain networks were computed. The 
regional characteristics of each node in the connectivity were analyzed. 
Strength (S), clustering coefficient (CC), local efficiency (LE), 
betweenness centrality (BC), page rank centrality (PC), eigenvector 
(EC), flow coefficient (FC), and k-coreness centrality (KC) were 
computed. All these measures have been defined previously in the 
literature to characterize topological alterations in brain function and 
have been implemented in various software packages. In this study, 
these are referred to as BCT measures because they are calculated within 
the brain connectivity toolbox (BCT) [22]. 

2.4. Statistical outlier removal by unsupervised learning 

Before the subsequent analysis and deep learning, BCT measures 

Fig. 1. The DBCP workstream proposed in this study.  

Table 1 
Demographic information and neuropsychological data.   

HC EMCI LMCI AD 

Total number 43 53 34 30 
Male/Female 16/27 20/33 21/13 12/18 
Age 75.51 ± 6.27 71.68 ± 6.39 72.35 ± 8.26 73.10 ± 6.81 
MMSE 28.93 ± 1.25 28.21 ± 1.72 27.79 ± 1.66 22.73 ± 2.45 
CDR 0.00 ± 0.00 0.49 ± 0.07 0.50 ± 0.00 0.85 ± 0.23 
NPI 0.73 ± 1.13 3.35 ± 5.58 3.37 ± 4.05 9.93 ± 10.68 
GDS 0.70 ± 1.07 1.89 ± 1.54 1.59 ± 1.42 1.50 ± 1.06 
FAQ 0.11 ± 0.38 2.49 ± 3.92 3.97 ± 4.48 15.62 ± 7.23 
ADAS 9.00 ± 3.50 12.64 ± 5.23 17.10 ± 7.25 35.54 ± 8.58 
ADNI_MEM 1.00 ± 0.51 0.55 ± 0.57 0.10 ± 0.54 − 1.04 ± 0.54 
ADNI_EF 0.83 ± 0.70 0.57 ± 0.79 0.18 ± 0.99 − 1.11 ± 0.72 

MMSE: Mini-Mental State Examination. CDR: Cognitive Dementia Rating Scale. 
NPI: Neuropsychiatric Inventory. GDS: Geriatric Depression Scale. FAQ: Func
tional Activities Questionnaire. ADAS: Alzheimer’s Disease Assessment Scale. 
ADNI_MEM and ADNI_EF: Composite measures of executive function and 
memory derived by ADNI. 
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should be tested to verify the statistical significance and effectiveness for 
classification in cohorts of different stages of MCI and AD patients. 
Although the processes of thresholding and binarization are carried out 
to achieve data enhancement, there still exists much noise and redun
dant information in the data for training. However, the commonly used 
parametric significance tests cannot be directly used here due to the 
unknown distributions of the BCT measures in brain networks. Two 
steps were implemented to improve data quality. First, a nonparametric 
significance test followed by FDR correction was adopted to test the 
significance of BCT measures in both static and dynamic functional brain 
connectivity. According to the Kruskal-Wallis H theory, a significance 
value beyond 0.05 implies an invalid statistical test that may be an 
accidental result. Only features with significant differences below 0.05 
level among groups were retained. Second, the unsupervised machine 
learning K-means method was used for the removal of outliers, espe
cially for dynamic connectivity, as the postprocessing procedure follows 
a significance test. Initially, K was set to 2, corresponding to the normal 
observations and outliers. The sigma principle derived from the normal 
distribution was considered as the convergence thresholding during it
erations in K-means. By calculating the distance between these values, 
noise information can be clustered and removed. Combined with box
plot, outliers in BCTs can be removed observably. Outliers are not the 
dynamic connectivity itself, but the calculated BCT measures based on 
that. Finally, only valid BCT measures were passed to the deep learning 
model in Section 2.5. 

2.5. Multigroup classification with dynamic characteristics 

To compare the effectiveness of BCT measures in static and dynamic 
connectivity for recognition in four-group subjects, a deep learning 
model was designed with fewer customized parameters than other 
complex models. In the input layer, 360 regional values from one of the 
fifteen BCT measures, which were computed from either static or dy
namic connectivity and processed by statistical outlier removal, were 
normalized to [0, 1] to feed the training model. 

The hidden layer consisted of four sublayers, and in each of the 
sublayers, there are 1024 rectified linear unit (ReLU) activation nodes. 
In the output layer, we adopted a four-class softmax structure for the 
determination of the testing subject belongs. The initial learning rate 
was 0.0001. The number of training iterations (epochs) was set to 20, 
and the batch size of the training samples was set to 16. These are 

convention settings in deep learning. Data samples are always divided 
into training and testing parts in a ratio of 0.8:0.2. For the avoidance of 
model overfitting, a validation part can be introduced, resulting in a 
rough ratio of 0.7:0.1:0.2. In this study, samples were divided into the 
three parts (training, validation, and testing), and the numbers of those 
parts were 114, 16, 30, adding up to 160 subjects for the static analysis, 
and each part is further segmented into 125 windows (114 × 125 =
14250, 16 × 125 = 2000, 30 × 125 = 3750, adding up to 20,000 
samples) for the dynamic connectivity analysis. BCTs in different 
windowed connectivities that were calculated from the same subject 
were assigned to the same set to avoid overfitting. 

3. Results 

Fig. 2 shows the results of dynamic brain connectivity by carrying 
out overlapping sliding-window segmentations on the BOLD signal of 
fMRI time series from a single subject. The horizontal axis represents the 
index of 125 segmented windows, and the vertical axis is the average 
connectivity level computed within each windowed time series. Fluc
tuation is observed to cross the sliding windows. The strongest con
nectivity can be seen in Window = 1. This may be due to the 
inadaptability of the patient just after entering the MRI equipment. As 
the scanning process continues, this discomfort significantly decreases, 
accompanied by average connectivity weakening. 

Following the generation of static or dynamic connectivity, local BCT 
measures are computed. Kruskal–Wallis H analysis was used to test the 
statistical significance of static and dynamic brain connectivity, and the 
results are drawn in Fig. 3. It comprises two parts: left, a mapping from 
7-RSNs to HCP MMP; Right, significance p-values of BCTs in static and 
dynamic connectivity. In the static connectivity, local BCT measures 
show little significance, with most of the p-values not reaching the 0.05 
level. In dynamic connectivity, BCT measures of nearly all areas of the 
brain achieved significant p-values far below 0.05. 

Next, distributions of local BCT measures are analyzed for dynamic 
connectivity, and the results are drawn in Fig. 4A. Although local BCT 
measures in dynamic connectivity are statistically significant, most of 
the values do not exhibit normal distributions, especially those of BC. 
With the help of boxplots in Fig. 4B, it is more evident that many outliers 
appear above the Q3 + 1.5IQR level or lower than the Q1 – 1.5IQR level. 
These outliers are removed in the K-means algorithm with iterations. 
The results are shown in Fig. 4C and Fig. 4D, from which an 

Fig. 2. Dynamic brain connectivity computed by 125 successive sliding windows.  
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approximately normal distribution can be observed and fewer outliers 
appear around the boxes. It can be observed that a drastic change of BC 
measure. This is mainly due to its complex calculation method compared 
to other centrality measures [22], which brings a large variation range 
of values. 

Fig. 5 shows the classification results of different regional BCT 
measures in static brain connectivity, and only those of weighted net
works are drawn. The horizontal axis represents the training steps, and 

the vertical axis represents the classification accuracy. The results in 
blue represent the accuracy within each training batch, and the red re
sults are testing results during epochs in deep learning. It can be 
observed that most training curves continuously increase as the number 
of steps increases except for those in BC. Although all the final training 
accuracies reach approximately 100%, none of the tested models behave 
well in multigroup recognition, which fluctuates from 20% to 40%. 

Fig. 6 shows the classification results of different regional BCT 

Fig. 3. Significance for static and dynamic functional brain connectivity. Left: The seven-RSN network areas are mapped into the HCP MMP. Right: P-value from the 
significance test. 

Fig. 4. Histogram and boxplot for the local BCT measures in dynamic brain connectivity with (A)-(B) no processing and (C)-(D) under statistical outlier removal by 
unsupervised learning. Data in each BCT measure are normalized to the range of [0–1] in the boxplots. Abbr. S: Strength; CC: Clustering Coefficient; LE: Local 
Efficient; BC: Betweenness Centrality; EC: Eigenvector Centrality; PC: Page rank Centrality; D: Degree. 
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measures in dynamic brain connectivity without outliers‘ removal, and 
only those of weighted networks are drawn. Different from the previous 
Fig. 5, the number of steps (horizontal axis) increases dramatically due 
to its many more training samples. Despite the statistical significance 
drawn in Fig. 3, models trained in dynamic connectivity have not 
learned any effective knowledge for the four-group classification, which 
makes neither the training nor testing results exceed 50% accuracy, and 
no distinct fluctuation is observed during training. Spurious connections 
may be introduced during the connectivity generation [23], outliers in 
BCT measures dampened the performance in multigroup classification. 

The curves in Fig. 7 are the training and testing results of different 
regional BCT measures in binary dynamic brain connectivity with out
liers removed. The classification models perform better compared with 
the results in Fig. 5 and Fig. 6, especially the model trained on page rank 
topological measures. Fig. 8 and Fig. 9 illustrate the mean accuracy with 
error bar and confusion matrix in ten times repeated. Table 2 lists the 
test results of each BCT measure. 

4. Discussion 

In this study, we propose a novel fMRI data preprocessing method for 
the multigroup classification of different stages of MCI and AD patients. 
Dynamic connectivity generated in sliding windowed fMRI time series 
was constructed by a series of processes, including multimodal parcel
lation, significance testing and outlier recognition in K-means. Regional 
brain BCT measures were calculated for the evaluation of functional 
topological alterations among the four cohorts. Finally, superior per
formance in four-class recognition was achieved through this DBCP 
method, and significant changes in the cerebral cortex among different 
degrees of cognitive impairment were observed. 

4.1. Significant alterations in the DMN and DAN among different stages 
of dementia 

We investigated the significant functional topological alterations in 
the brains of HCs converting to AD, and areas mapped into the seven 
RSNs are illustrated in Fig. 10. Following the multigroup classification, 
page rank is found to be the most effective feature in the recognition of 
different degrees of cognitive impairment. Thus, we further carried out 
ANOVA with Tukey’s post hoc test (p < 0.05) on the page rank values in 
HCP MMP areas for all four groups of subjects. We separate the results 
into three parts: (A) As shown in Fig. 10A, alterations in these areas were 
significant in the HC and EMCI groups, while it failed to distinguish 
LMCI from AD. We consider it the early stage of HC converting to AD. 
These are 14 cortical areas in the DMN (R-9p, R-STSdp, L-STGa, and L- 
TE1m), VAN (R-p32pr, R-TPOJ1, L-FOP5), SN (R-A4, L-6mp), VN (R- 
V3A, L-PHA1), DAN (L-AIP), FN (L-7Pm), and limbic system (L-OFC). (B) 
As shown in Fig. 10B, the middle stage of HC converting to AD with 
significant differences was found in the HC and AD groups, while page 
rank values in these areas were not significant between the EMCI and 
LMCI groups. The region contains 25 areas, including DAN (R-FEF, R- 
7AL, R-PFt, R-FST, L-PEF, L-LIPV), DMN (R-STGa, L-PCV, L-a24, L-45, L- 
STSdp), VN (R-Pres, R-LO3, L-MT, L-Pres, L-PHA3, L-PHA2), FN (R-8Av, 
L-8c, L-i6-8), SN (L-OP4, L-A5, L-MBelt) and VAN (R-5mv, L-PI). (C) As 
shown in Fig. 10C, the last final stage of HC converting to AD with 
significant differences was found in the LMCI and AD groups, while page 
rank values in these areas were not significant between the HC and EMCI 
groups. The region contains 25 areas, including the DMN (R-7 m, R- 
POS1, R-8Ad, L-10r, L-10d, L-s6-8, L-s32), DAN (R-7Am, R-LIPv, R-IFJp, 
R-IPOJ3, L-7Pl), VAN (R-23c, R-p24pr, R-MI), SN (R-3a, R-A5, R-MBelt), 
FN (R-44, R-IFJa, L-a32pr), VN (R-MST, R-VMV2, L-V8) and limbic 
system (R-EC). Table 3-5 list all the details referred in Fig. 10. It is 
generally believed that dysfunctionality in DMN and DAN causes 

Fig. 5. Classification results of regional BCT measures in weighted static brain connectivity.  
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changes in human cognitive ability [25–28], while few studies have a 
focus on these dedicated multi-modal parcellated cortex regions. In 
addition to providing more evidence on the primary responsibility of 

RSN for cognitive impairment of the brain, these fine-grained cortical 
regions are suggested as the prominent biomarker locations for further 
studies. 

Fig. 6. Classification results of regional BCT measures in weighted dynamic brain connectivity without outliers‘ removal.  

Fig. 7. Classification results of regional BCT measures in binary dynamic brain connectivity after statistical outlier removal.  
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4.2. Enhanced classification capability in dynamic connectivity with 
multimodal cortex parcellation and outliers‘ removal with unsupervised 
learning 

Although the effectiveness of dynamic connectivity in early cognitive 
impairment diagnosis has been verified recently, the classification per
formance is poor, especially in multigroup situations. To date, most 
studies have achieved high accuracy in binary-group recognition. 
Ramzan et al., [29] built and validated the ability of a convolutional 
neural network to distinguish the individual diagnosis of cognitive 
impairment who will convert to AD with stable MCI with an accuracy of 
75%. Li et al., [30] constructed a hypernetwork by integrating ASL 
perfusion MRI with BOLD fMRI time series and achieved an accuracy of 
86.9% for classification in 28 MCI individuals and 33 healthy controls. 
Ieracitano et al., [31] developed a multimodal feature extraction 
method based on EEG recordings and obtained an average accuracy of 
94.5% with machine learning for any two pairs among HC, MCI, and AD 
subjects. Table 6 lists the classification performance compared with 
previous studies. Although it is expected to be the most fine-grained 
multi-modal cortex parcellation, HCP MMP hasn‘t been widely studied 
due to its rigorous requirements for MRI data. Only static connectivity 
was considered before [11–13]. It can also be observed that for multi
group classification, a high-level accuracy of prediction is difficult. On 

the one hand, it is limited by the available samples for model learning, 
especially because the number of MCI or AD patients is far fewer than 
that of healthy individuals, which leads to a severe imbalance of training 
data. On the other hand, the single modal based parcellation model or 
fMRI with static connectivity is inadequate to learn enough knowledge 
for accurate recognition. The accuracy of the three-group (HC, MCI, and 
AD) classification is often approximately 70%~85%, while the four- 
class (HC, EMCI, LMCI, and AD) classification is rarely considered. 

In the final test results listed in Table 2, we achieved a superior 
performance of four-group classification scores of 86.12% with the local 
BCT measures page rank centrality as input of deep learning. There come 
two reasons for this. First, dynamic connectivity with a sliding window 
is constructed, and its effectiveness in the identification of different 
stages of cognitive impairment is verified. Compared with previous 
classification results from static connectivity-based studies and the 
nonparametric significance test, functional connectivity in sliding 
windowed time series maintains more information about the behavior 
pattern in the brain. Static connectivity may cause severe loss of subtle 
functional topological change information in brain regions through 
homogenization over the scanning period of fMRI time series. It can be 
observed in the results of Fig. 3 that the difference among groups has 
increased prominently from static to dynamic. The vast majority of 
regional BCT measures reached a significance level with a p-value lower 
than 0.05. 

In the box plots of Fig. 4B, disadvantages of dynamic connectivity are 

Fig. 8. Model test results with error bar in ten times repeated.  

Fig.9. Confusion Matrix corresponding to the tested model.  

Table 2 
Results for the multigroup classification after deep learning.  

BCT 
measure 

Brain 
Connectivity 

Training Validation Test Previous* 

S Weighted 
Dynamic 

0.3125  0.3393  0.3311  0.7474 
PC 1  0.9860  0.8548  – 
LE 1  0.7888  0.7275  – 
EC 0.3125  0.3303  0.3305  – 
D 0.4375  0.3358  0.3301  – 
CC 1  0.7968  0.7125  – 
BC 0.4375  0.3335  0.3319  – 
S Binary 

Dynamic 
0.4375  0.3368  0.3292  – 

FC 1  0.8538  0.7654  – 
PC 1  0.9883  0.8612  0.8000 
LE 1  0.8018  0.7541  0.7684 
KC 1  0.9718  0.7188  0.7895 
EC 0.375  0.3338  0.3294  0.7789 
CC 1  0.8498  0.7780  – 
BC 0.1875  0.3325  0.3324  0.7684 

* Study from [24]. 
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prominent, in which too much noise is generated through windowed 
fMRI time series. The original continuous signal is manually split into 
multiple overlapping fragments. This causes the regional topological 

measures to be incorrectly calculated based on these connectivity 
matrices. The outliers must be removed as the postprocessing step after 
graph-based complex brain network analysis. 

BCT measures are not processed into normal distribution on purpose. 
First, the natural distribution of BCT measures is unknown. For this 
reason, we tested the significance with the nonparametric statistical 
analysis instead of the commonly used t-test or ANOVA analysis. We 
found BCT measures in dynamic connectivity presented more signifi
cantly although many outliers were observed in the boxplot. Second, to 
remove these noisy values, K-means was carried out to differentiate the 
noise and the valid values (that is why K = 2) by unsupervised clus
tering. After outliers‘ removal, we found the centralized distributed BCT 
measures in Fig. 4A are approximately normally distributed as shown in 
Fig. 4C. 

We compare the classification ability in the static and dynamic 
connectivity with both weighted and binary networks from Fig. 5 to 
Fig. 7. In Fig. 5, the training curves of nearly all the regional BCT 
measures except BC reach a relatively stable high accuracy. Models seem 
to be good enough for multigroup recognition. In testing, the results 
fluctuate in the range of 20% ~ 50% only. The models learned are 
underfitting due to their insufficient training data and inappropriate 
feature extraction. The results in Fig. 6 and Fig. 7 again demonstrate the 

Fig. 10. Significant (p < 0.05) functional topological alterations from HCs converting to AD.  

Table 3 
Cortical Areas referred in Fig. 10A.  

Stage Area Name 
in HCP MMP 

Area Description [10] Corresponds to 
RSN 

The early 
stage 
(HCs to 
EMCI) 

R-9p Area 9 Posterior DMN 
R-STSdp Area STSd posterior 
L-STGa Area STGa 
L-TE1m Area TE1 Middle 
R-p32pr Area p32 prime VAN 
R-TPOJ1 Area TemporoParietoOccipital 

Junction 1 
L-FOP5 Area Frontal Opercular 5 
R-A4 Auditory 4 Complex SN 
L-6mp Area 6mp 
R-V3A Area V3A VN 
L-PHA1 ParaHippocampal Area 1 
L-AIP Anterior IntraParietal Area DAN 
L-7Pm Medial Area 7P FN 
L-OFC Orbital Frontal Complex Limbic system  

Table 4 
Cortical Areas referred in Fig. 10B.  

Stage Area Name in 
HCP MMP 

Area Description [10] Corresponds to 
RSN 

The middle 
stage 
(EMCI to 
LMCI) 

R-FEF Frontal Eye Fields DAN 
R-7AL Lateral Area 7A 
R-PFt Area PFt 
R-FST Area FST 
L-PEF Premotor Eye Field 
L-LIPV Area Lateral IntraParietal 

ventral 
R-STGa Area STGa DMN 
L-PCV PreCuneus Visual Area 
L-a24 Area a24 
L-45 Area 45 
L-STSdp Area STSd posterior 
R-Pres PreSubiculum VN 
R-LO3 Area Lateral Occipital 3 
L-MT Middle Temporal Area 
L-Pres PreSubiculum 
L-PHA3 ParaHippocampal Area 3 
L-PHA2 ParaHippocampal Area 2 
R-8Av Area 8Av FN 
L-8c Area 8c 
L-i6-8 Inferior 6–8 Transitional 

Area 
L-OP4 Area OP4/PV SN 
L-A5 Auditory 5 Complex 
L-MBelt Medial Belt Complex 
R-5mv Area 5 m ventral VAN 
L-PI Para-Insular Area  

Table 5 
Cortical Areas referred in Fig. 10C.  

Stage Area Name 
in HCP MMP 

Area Description [10] Corresponds to 
RSN 

The final 
stage 
(LMCI to 
AD) 

R-7 m Area 7 m DMN 
R-POS1 Parieto-Occipital Sulcus Area 1 
R-8Ad Area 8Ad 
L-10r Area 10r 
L-10d Area 10d 
L-s6-8 Superior 6–8 Transitional Area 
L-s32 Area s32 
R-7Am Medial Area 7A DAN 
R-LIPv Area Lateral IntraParietal 

ventral 
R-IFJp Area IFJp 
R-TPOJ3 Area TemporoParietoOccipital 

Junction 3 
L-7Pl Lateral Area 7P 
R-23c Area 23c VAN 
R-p24pr Area Posterior 24 prime 
R-MI Middle Insular Area 
R-3a Area 3a SN 
R-A5 Auditory 5 Complex 
R-MBelt Medial Belt Complex 
R-44 Area 44 FN 
R-IFJa Area IFJa 
L-a32pr Area anterior 32 prime 
R-MST Medial Superior Temporal Area VN 
R-VMV2 VentroMedial Visual Area 2 
L-V8 Eighth Visual Area 
R-EC Entorhinal Cortex Limbic system  
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better performance of the DBCP method than the original regional BCT 
measures in dynamic connectivity without processing abnormal values. 
There are almost no changes in the curves of Fig. 6, which depicts the 
ineffectiveness of dynamic connectivity before post-processing in DBCP. 
Too many outliers (see Fig. 4B) along with thousands of training steps 
result in no useful weightings being searched during the training pro
cedure. Most measures shown in Fig. 7 achieve high classification scores 
in both training and testing. The pagerank centrality measures the 
importance of nodes in a graph, assigns scores to these nodes, and per
forms ranking on them. It was initially proposed for a proper ranking of 
web pages [39], and recently, it has been applied successfully in the 
domain of MCI or AD prediction [40–42]. Ebadi et al., [43] collected 45 
adults for training in various machine learning algorithms and identified 
the page rank measure in the premotor cortex as one of the good 
discriminative features for MCI diagnosis. Khazaee et al., calculated 5 
global and 2,904 local BCT measures in 168 subjects of the ADNI dataset 
and found that the local page rank was able to classify three groups with 
an accuracy of 80%. Moreover, it was confirmed as the optimal func
tional topological feature in brain connectivity for the recognition of HC, 
MCI, and AD [24]. For the clustering coefficient measure, de Vos et al., 
[32] investigated 77 AD patients and 173 controls using RS-fMRI data, 
calculated graph-based connectivity measures, and finally achieved an 
AUC (area under the receiver operating characteristic curve) score of 
0.84. Josefsson et al., [44] verified the significant difference of clus
tering coefficient measure of EEG recordings between the subject of MCI 
and healthy controls. The results in this study agree with previous 
studies that page rank and clustering coefficient are suitable for the 
usage of recognition in MCI and AD groups and improve the accuracy 
substantially to 86.12% in four-group classification by the DBCP 
method. 

4.3. Effective deep learning structure in DBCP for multigroup 
classification 

In addition to the outstanding performance in statistical significance 
tests, dynamic connectivity solves the problem of few available samples 
in static functional connectivity analysis. Due to the small proportion of 
cognitive impairment patients in the population and various inconsis
tent imaging protocols, valid data for training are insufficient compared 
with other deep learning studies. In this study, we collected 160 subjects 
from four groups as much as possible to construct static connectivity. For 
dynamic connectivity, the number of available samples is enlarged to 
20,000 as a result of the sliding window. Each segmented connectivity 
within windowed time series is regarded as an instance of brain behavior 
patterns among EMCI, LMCI, AD, or HC. Another feature of deep 
learning in this study is that the acquired dataset is divided into three 
parts. During the learning procedure, only the training and validation 
sets are used in the epoch iterations. Weights in the model are regulated 
toward a better performance with validation data. As mentioned in 
previous studies, two-part holdout strategy would induce overfitting in 
classification. Therefore, the test set is used only once to test the true 
ability of the learned model in multigroup recognition. Other 

parameters are tested through replication experiments. As illustrated in 
Fig. 11, the learning rate of 0.0001 is determined by its highest accuracy. 

Various deep learning models are being designed in studies. Except 
for the recognition performance in different groups, too complex a 
model structure and such many parameters to be adjusted dramatically 
increase the difficulty of training. Commonly used structures, including 
CNNs, RNNs, or other models, always involve hundreds of layers, nodes, 
and customized settings, which reduce the reproducibility of the results. 
The poor interpretability of complex deep learning models is also one of 
the commonly confused problems in the early prediction of MCI. 
Regardless of how complexly the learning model is designed, it is 
essentially a fully connected neural network structure. In this study, 
with the help of the DBCP method, the outstanding performance of 
multigroup recognition is built on a simple and standard deep learning 
module with a four-hidden layer and a softmax function. It is entirely 
dependent on the superiority of dynamic connectivity mapping with 
HCP MMP and interference information removal in the postprocessing 
stage. 

Several aspects can be improved in future study. First, the con
struction of connectivity can be more specific to explore the cooperative 
mechanism in the brain. Correlation coefficient between fMRI signals is 
the most efficient and widely used approach to evaluate the linear 
coupling degree in brain areas, while intrinsic information may be 
hidden by this simple mathematical calculation. Physiological charac
teristics like phase synchronization [45] and time delay stability [46] 
can be exploited to assess the complex brain systems, especially for 
dynamic connectivity construction and pathological brain analysis 
[47,48]. Second, although we have tried our best to reduce the impact of 
overfitting, the only way to avoid overfitting is to expand the available 
samples as much as possible. The small size of AD samples is still a 
common problem that hinders the application of deep learning in AD 
study. 

5. Conclusion 

Following a series of processing steps in DBCP and mapping with 
HCP MMP, centrality alterations in the DMN and DAN show predomi
nant responsibility for cognitive impairment in the brain. Multigroup 
classification capability is enhanced with statistical outliers recognized 
in the K-means algorithm. Dynamic functional connectivity within the 
most fine-grained multimodal human cortex parcellation is demon
strated with prominent performance in analysis and recognition for 
different stages of HC conversion to AD. The DBCP preprocessing plat
form is available (https://dbcp.cuz.edu.cn and https://github.com/Bo 
cheng-Wang/DBCP), which allows great freedom in usage. 

Data availability statement 

All data are available on request. The DBCP preprocessing platform is 
available (http://dbcp.cuz.edu.cn and https://github.com/Bocheng- 
Wang/DBCP), which allows great freedom in usage. 

Table 6 
Classification performance compared with previous studies.  

Method Number Modality Parcellation Connectivity Classification Accuracy 

F De Vos et al., (2018) [32] 250 fMRI ICA/RSN Static/Dynamic Binary 79% 
Anwar et al., (2018) [33] 287 sMRI SPM – Three-group 79.8% 
Amoroso et al., (2018) [34] 240 sMRI Freesurfer – Four-group 38.8% 
Sheng et al., (2019) [11] 96 sMRI/fMRI HCP MMP Static Binary 95.8% 
Huang et al., (2020) [35] 120 FA/MD/sMRI Colin27 – Binary 94.2% 
Liu et al., (2021) [36] 560 sMRI Freesurfer – Binary 73.8% 
Basheera et al., (2021) [37] 349 sMRI ICA – Three-group 81.48% 
Gao et al., (2021) [38] 1139 sMRI FMRIB – Three-group 62.9% 
Sheng et al., (2021) [12] 132 sMRI/fMRI HCP MMP Static Four-group 53.3% 
Proposed 160 sMRI/fMRI HCP MMP Dynamic Four-group 86%  
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[44] A. Josefsson, A. Ibáñez, M. Parra, J. Escudero, Network analysis through the use of 
joint-distribution entropy on EEG recordings of MCI patients during a visual short- 
term memory binding task, Healthcare Technol. Lett. 6 (2019) 27–31, https://doi. 
org/10.1049/htl.2018.5060. 

[45] R.P. Bartsch, A.Y. Schumann, J.W. Kantelhardt, T. Penzel, P.C. Ivanov, Phase 
transitions in physiologic coupling, Proc. Natl. Acad. Sci. 109 (26) (2012) 
10181–10186. 

[46] A. Bashan, R.P. Bartsch, J. Kantelhardt, S. Havlin, P.C. Ivanov, others, Network 
physiology reveals relations between network topology and physiological function, 
Nature, Communications. 3 (2012) 1–9. 

[47] A. Lin, K.K. Liu, R.P. Bartsch, P.C. Ivanov, Dynamic network interactions among 
distinct brain rhythms as a hallmark of physiologic state and function, 
Communications Biology. 3 (2020) 1–11. 

[48] E.E. Asher, M. Plotnik, M. Günther, S. Moshel, O. Levy, S. Havlin, J.W. Kantelhardt, 
R.P. Bartsch, Connectivity of EEG synchronization networks increases for 
Parkinson’s disease patients with freezing of gait, Communications Biology. 4 
(2021) 1–10. 

B. Wang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.neuroimage.2019.01.080
https://doi.org/10.1016/j.neuroimage.2019.01.080
https://doi.org/10.1016/j.neuroimage.2020.117522
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0100
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0100
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0100
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0100
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0105
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0105
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0105
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0105
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0115
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0115
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0115
https://doi.org/10.1007/s11682-015-9448-7
https://doi.org/10.1016/j.neurobiolaging.2016.11.013
https://doi.org/10.1016/j.neurobiolaging.2016.11.013
https://doi.org/10.1002/hbm.24871
https://doi.org/10.1002/hbm.24871
https://doi.org/10.1142/S0129065720500045
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0140
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0140
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0140
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0140
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0140
https://doi.org/10.1007/s10916-019-1475-2
https://doi.org/10.1016/j.media.2018.11.006
https://doi.org/10.1016/j.media.2018.11.006
https://doi.org/10.1016/j.neunet.2019.12.006
https://doi.org/10.1016/j.neunet.2019.12.006
https://doi.org/10.1016/j.neuroimage.2017.11.025
https://doi.org/10.1016/j.neuroimage.2017.11.025
https://doi.org/10.1016/j.bspc.2018.02.019
https://doi.org/10.1016/j.jneumeth.2017.12.011
https://doi.org/10.3389/fnagi.2020.00206
https://doi.org/10.21037/apm-21-2013
https://doi.org/10.21037/apm-21-2013
https://doi.org/10.1002/ima.22553
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0190
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0190
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0190
https://doi.org/10.1016/j.eswa.2019.113024
https://doi.org/10.1016/j.neuroscience.2020.04.048
https://doi.org/10.1016/j.neuroscience.2020.04.048
https://doi.org/10.18632/aging.102943
https://doi.org/10.18632/aging.102943
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0210
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0210
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0210
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0210
https://doi.org/10.1016/j.jneumeth.2018.03.008
https://doi.org/10.1049/htl.2018.5060
https://doi.org/10.1049/htl.2018.5060
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0225
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0225
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0225
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0230
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0230
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0230
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0235
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0235
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0235
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0240
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0240
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0240
http://refhub.elsevier.com/S1746-8094(22)00247-6/h0240

	Multigroup recognition of dementia patients with dynamic brain connectivity under multimodal cortex parcellation
	1 Introduction
	2 Materials and method
	2.1 Data acquisition
	2.2 Dynamic brain connectivity in HCP MMP
	2.3 Topological alterations in the chronnectome
	2.4 Statistical outlier removal by unsupervised learning
	2.5 Multigroup classification with dynamic characteristics

	3 Results
	4 Discussion
	4.1 Significant alterations in the DMN and DAN among different stages of dementia
	4.2 Enhanced classification capability in dynamic connectivity with multimodal cortex parcellation and outliers‘ removal wi ...
	4.3 Effective deep learning structure in DBCP for multigroup classification

	5 Conclusion
	Data availability statement
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


